一、光电管的特性实验 怎么确定截止电压?
光电管的特性实验,其实验过程和结论都证明:
这个实验主要是根据爱因斯坦的这个方程来做的 eu=1/2mv^2=hv-hv0
当用频率为v的光照射时,会有光电子出来,然后加上电压,电子会减速,当观察不到光电流时说明 eu=1/2mv^2,此时的u就是截止电压。
二、光电管两极间电压正反是固定的?
1、当金属板接电源负极,使得光电子加速,此时光电管两端的电压为光电效应的正向电压。
2、当金属板接电源正极,使得光电子减速,此时光电管两端的电压为光电效应是反向电压
三、光电管的用途?
光电管(phototube)基于外光电效应的基本光电转换器件。光电管可使光信号转换成电信号。光电管分为真空光电管和充气光电管两种。光电管的典型结构是将球形玻璃壳抽成真空,在内半球面上涂一层光电材料作为阴极,球心放置小球形或小环形金属作为阳极。若球内充低压惰性气体就成为充气光电管。光电子在飞向阳极的过程中与气体分子碰撞而使气体电离,可增加光电管的灵敏度。用作光电阴极的金属有碱金属、汞、金、银等,可适合不同波段的需要。光电管灵敏度低、体积大、易破损,已被固体光电器件所代替。
四、光电管符号?
符号的第二部分表示器件的材料和结构:A——PNP型锗材料;B——NPN型锗材料;C——PNP型硅材料;D——NPN型硅材料。符号的第三部分表示功能:U——光电管;K——开关管;X——低频小功率管;G——高频小功率管;D——低频大功率管;A——高频大功率管。另外,3DJ型为场效应管,BT打头的表示半导体特殊元件。
五、光电管的优缺点?
光电管(phototube)基于外光电效应的基本光电转换器件。光电管可使光信号转换成电信号。光电管分为真空光电管和充气光电管两种。光电管的典型结构是将球形玻璃壳抽成真空,在内半球面上涂一层光电材料作为阴极,球心放置小球形或小环形金属作为阳极。若球内充低压惰性气体就成为充气光电管。
光电子在飞向阳极的过程中与气体分子碰撞而使气体电离,可增加光电管的灵敏度。
用作光电阴极的金属有碱金属、汞、金、银等,可适合不同波段的需要。光电管灵敏度低、体积大、易破损,已被固体光电器件所代替。
六、光电管烧毁的原因?
1.可能原因有供电电压的突然升高,导致发光损坏。让供电电源电压突然升高的原因就很多了例如电源的质量问题,
2.可能原因是电源短路,线路中某个元件或印制线条或其它导线的短路而形成发供电通路的局部短路,使这个地方的电压增高。
七、光电管的工作原理?
光电管液位控制器由一个玻璃管液位指示器和一组电器控制元件组成,用于制冷装置中低压容器的液位控制。
光电管液位控制器指示器是将玻璃管分成三等分,在外壳上标有最低液位、正常液位和最高液位的刻度线。并分装上一组光电管。玻璃管内部放置一个用铁皮制作的浮子,浮子的直径略小于玻璃管的内径,能浮在管内的油面上。
光电管液位控制器电气控制部分主要由亮通式光电继电器、中间继电器、电磁阀、指示灯、报警器和按钮等组成。
使用时,浮子随液位的高低而上下浮动,遮住了相应光电继电器的光线,使其接通或闭合,实现对液位的控制。
当液位处于最低时,浮子下降,低液位光电继电器吸合,开启供液电磁阀向容器供液。
八、为什么随着加在光电管两端的正向电压的增大?
光电管两端电压增大,内部的放光二极管发光越强,使得光电三极管电流增大,达到饱和。
光电管(phototube)基于外光电效应的基本光电转换器件。光电管可使光信号转换成电信号。光电管分为真空光电管和充气光电管两种。光电管的典型结构是将球形玻璃壳抽成真空,在内半球面上涂一层光电材料作为阴极,球心放置小球形或小环形金属作为阳极。若球内充低压惰性气体就成为充气光电管。光电子在飞向阳极的过程中与气体分子碰撞而使气体电离,可增加光电管的灵敏度。用作光电阴极的金属有碱金属、汞、金、银等,可适合不同波段的需要。光电管灵敏度低、体积大、易破损,已被固体光电器件所代替。
光电管原理是光电效应。一种是半导体材料类型的光电管,它的工作原理光电二极管又叫光敏二极管,是
光电管结构原理图
利用半导体的光敏特性制造的光接受器件。当光照强度增加时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,如果二极管反偏,则反向电流增大,因此,光电二极管的反向电流随光照的增加而上升。光电二极管是一种特殊的二极管,它工作在反向偏置状态下。常见的半导体材料有硅、锗等。如我们楼道用的光控开关。还有一种是电子管类型的光电管,它的工作原理用碱金属(如钾、钠、铯等)做成一个曲面作为阴极,另一个极为阳极,两极间加上正向电压,这样当有光照射时,碱金属产生电子,就会形成一束光电子电流,从而使两极间导通,光照消失,光电子流也消失,使两极间断开。
光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应。金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的
光电效应原理示意图
波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。这种解释为爱因斯坦所提出。光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用,在光的照射下,使物体中的电子脱出的现象叫做光电效应(Photoelectric effect)。 光电效应分为光电子发射、光电导效应和光生伏打效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。
光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关 ,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。
九、光电管元件类型?
光电效应有外光电效应、内光电效应和光生伏特效应三种。基于外光电效应的光电元件有光电管、光电倍增管等;基于内光电效应的光电元件有光敏电阻、光敏晶体管等;基于光生伏特效应的光电元件有光电池等。
十、光电管的参数及特性?
伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出的I-U图像叫做导体的伏安特性曲线图。这种图像常被用来研究导体电阻的变化规律,是物理学常用的图像法之一。