一、双向可控硅触发电路?
SCR3是一个双向可控硅,它和周边电路组成SCR1和SCR2导通角控制电路。
显然,正弦波过零后SCR3导通的越早,负载获得的电压越高,改变R2的数值,就可以改变180°范围内导通开始的时间,SCR3导通,SCR1和SCR2随之导通,就可以调节负载的电压。二、可控硅触发电路原理?
可控硅触发电路共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
三、可控硅触发电路计算?
R5, 是限流, R10是防误触发; U2的4,6脚一般有一个瞬间最大电流值,比如1A,这时, R5一般取大于 220V/1A; R10呢, 如没有, 则一些波动电流也会T1的G和T1脚,所以, 为了误触发, 加了一个旁路电阻, 这个电阻一般太大,大小就不合适, R10和T1的G-T1脚并联, G-T1是双向二极管, 考虑到R10,R5对电压的分压作用, 一般取 R10=R5吧 其实, 偷懒一点, R5,R10,都可以不要!
四、单向可控硅触发电路原理?
当可控硅控制极G与阴极K之间加正向触发电压时,可控硅导通,负载有电流通过。可控硅导通后,只要A、K之间保持正向电压和维持一定电流,去掉触发电压可控硅仍可保持导通状态。在A、K间电压与电流不能维持导通时,或A、K之间电压极性发生变化时,可控硅则由导通变为截止
五、什么叫可控硅触发脉冲电路?
1、可控硅触发板脉冲点数的意思是:电磁线圈驱动中采用的大功率开关有三电极间隙开关、真空触发开关和半导体可控硅开关。
2、脉冲,科技名词,主要指一个物理量在短持续时间内突变后迅速回到其初始状态的过程。从脉冲的定义内我们不难看出,脉冲有间隔性的特征,因此我们可以把脉冲作为一种信号。脉冲信号的定义由此产生。相对于连续信号(在整个信号周期内短时间中都有的信号),大部分脉冲信号周期内是没有信号的。就象人的脉搏一样。脉冲信号一般指数字信号,它已经是一个周期内有一半时间(甚至更长时间)有信号。计算机内的信号就是脉冲信号,又叫数字信号。
3、可控硅触发板是通过调整可控硅的导通角来实现电气设备的电压电流功率调整的一种移相型的电力控制器,其核心部件采用国外生产的高性能、高可靠性的军品级可控硅触发专用集成电路。
六、可控硅的触发电路的原理?
可控硅触发电路共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
七、如何做可控硅触发电路?
1、可以用直流触发可控硅装置。
2、电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。
3、电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。
八、双向可控硅触发电路工作原理?
工作原理:
以过零触发电路作为直流调速功率放大电路的驱动模块,该模块采用光耦合隔离技术,具有结构简单,稳定性好,驱动能力强,功耗低的特点,但只能在触发信号的控制下在高压侧产生栅极驱动电压.驱动电压驱动双向可控硅通过控制触发脉冲的触发角的大小,从而实现对直流电机的调速控制。
双硅跟单硅不同,控制极加的是一个交流触发电压,触发电压来自于R2和R3的分压后,经光耦控制可控硅的导通,从而控制负载工作还是停止,在这里光耦只是起到一个无触点开关的作用,即便去掉光耦,负载也能够工作,只是停止不了,所以光耦在这里就相当于电灯的一个开关,通过调整触发脉冲频率来控制可控硅的导通角。
九、可控硅移相触发电路原理?
原理如下所示:
通过控制可控硅的导通角大小来控制可控硅的导能量,从而改变负载上所加的功率。特点控制波动小,使输出电流、电压平滑升降。
十、可控硅移相触发电路的特点?
纵观诸多可控硅移相触发电路,基本采用都是双基极管,且都是与相应的模块固定配套使用. 而不同
的生产过程控制要求又不同,往往是因难于找到相适应规格型号模块而不得不对控制电路进行修正,结果
造成生产过程可控精确度降低,直接影响了产品性能. 再经对其工作原理分析,可知双基极管工作时所需
电压较高,安全性差;而作同步信号使用时,又不得不用限流电阻和稳压二极管组成削波电路,以增强其抗
干扰能力,才可确保其输出信号的完好;若想获得较宽幅度的梯形波,又不得不采用较高电压的同步变压
器(60 —70V) 和大功率的限流电阻. 其结果造成电路体积庞大,热损耗增加;同时,因工作时所需电压较
高,给电路的操作带来不便. 为此,我们利用集成电路设计组成可控硅移相触发电路,该电路克服了双基极
管移相触发电路工作电压高、适应面窄、热损耗大之缺陷;同时该电路具有体积小、移相范围宽、灵敏度高
之优点;不仅可作模块触发电路,更重要的是它还可与不同规格型号的单个可控硅相配套. 电路结构简单,
操作方便、安全可靠. 从而给生产过程的控制精确度和电路的设计带来方便.