一、模拟电路的设计?
像基本三极管电路,首先要知道三极管的工作原理,NP结构造和工作方式,在这个基础上增加控制各个NP结的电流的电路,比如加多大电阻,输入信号从那个极输入,偏置电压多少等等,这完全是设计出来的。
当然试验是必不可少的过程,若干级别的放大电路设计也是从单个放大器,增加到二级放大,经过试验调整各个参数,再增加一级,再试验……再调整……直到完美的结果。
理论做基础,先设计出电路,再经过试验来验证,再调整。任何科研都是这个过程。
二、恒流源电路的设计?
恒流源电路是一种宽频谱,高精度交流稳流电源。
恒流源电路具有响应速度快,恒流精度高、能长期稳定工作,适合各种性质负载(阻性、感性、容性)等优点。
恒流源电路主要用于检测热继电器、塑壳断路器、小型短路器及需要设定额定电流、动作电流、短路保护电流等生产场合。
三、移相器设计电路?
可在0~-180度范围内变化的-90度移相电路 ,
电路的功能:
“具有平坦频率特性的±90度的移相电路”的移相电路只能在0~+180度范围内移相,可使用CO与RO位置互换的-90度的移相电路。
电路的工作原理
基本工作原理与“具有平坦频率特性的±90度的移相电路”相同,只是改变了相位的极性。这里只说明相位可变范围的计算方法。FO=1KHZ,φ=-60~-120度,CO=0.01UF时,RO=15.92K,若RO可变,相位角φ=-2TAN的-1次方(RX/R0),当RX=RO时φ为90度。
如果令A=TAN(φ/2),那么当φ=-60度时,A=0.577,φ=-120度时,A=1.732,因此,RX的最小值RMIN为9.147K(RMIN≤R0*A(60)=9.17K),RX的最大值为27.55K(RMAX≥R0*A(120)=27.55K)。若用一个9.1K的电阻和一个20K的可变电阻构成RX,实际的相位变化范围为:
由此可知,这一相位变化范围可以满足使用要求。实际上电容器C0会有误差,可变电阻可变范围该稍大一些。
四、相位鉴频器的工作原理?
普通鉴频器的工作原理是:首先将已限幅的调频波转换成包络也按原调制信号规律而变化的调频波,然后经过包络检波器来检出调制信号。
由于RICE噪声的存在,使得调频接收会出现门限效应而无法正常接收信号,由此出现了门限扩展鉴频器。锁相鉴频器能够有效地降低调频接收门限,提高接收灵敏度。五、电路安装的设计思路?
电路安装设计思路首先要具有设计安全性,及不会容易危及到人的安全,其次要具备美观性简易性。还有要具备可行性的思路。
六、外围电路怎么设计?
外围电路其实要看用做哪一方面的,外围电路包括控制电路,案件电路,显示电路模块等等,没什么重点科研,具体要看做的项目需要用到哪些模块,直接把模块加上去就行啦,例如是L298的驱动电路模块,只要直接接上就可以啦,又或者是12864的显示模块,也是接上就行啦,重点在于这些模块用到的控制量什么,还是一些高功率的电压,如果是高功率的话,就要利用单片机低电控制高电。
还有一个很重要的是这个系统的稳定性,这些都需要考虑。并没有什么笼统的重点部重点之分,要看具体项目的需要。
七、组合逻辑电路的设计?
(1) 由实际逻辑问题列出真值表;
(2) 由真值表写出逻辑表达式;
(3) 化简、变换输出逻辑表达式;
(4) 画出逻辑图。
组合逻辑电路:
定义:输出状态在任何时刻只取决于同一时刻的输入状态,而与电路原来的状态无关。
特点:(1)输入输出之间没有反馈延迟通路;(2)电路中不含具有记忆功能的元件。
八、设计多级放大电路的步骤?
多级放大电路的步骤:
1、先看绘制完成后的电路图
2、绘制电阻和电容,电阻和电容的尺寸参数与原先所讲的尺寸参数是相同的,由于我们现在使用的AUTOCAD2015没有寻找中心的方法(大家可以使用AUTOCAD2016版本,这个版本可以自动找到对象的中心),我们建立辅助层,并将其颜色改为辅助色,画出对象的中心点,画出对象的中心点,是为了完成中心对齐操作。
3、绘制三极管,这个就不多说了,大家应该很熟练了
4、完成放大电路图的绘制。
5、绘制输入波形曲线
6、绘制一级放大波形曲线,注意反相
7、绘制二级放大波形曲线,注意反相
8、绘制输出波形曲线
9、关闭辅助层后,就可以看到完整的电路图了。
九、热插拔的电路设计?
热插拔电路设计应用非常广泛,作用是对热插拔的设备的元器件、芯片的一种保护措施。通常热插拔采用对信号进行隔离缓冲处理,采用244,245等器件来处理。并且在输入信号增加限流电阻和0.1uF滤波电容,对于输出信号通常直接由 244,245输出即可。还有,除了过缓冲隔离之外,对于PCI接口等信号,通常还需要控制其上电,这也就是PCI总线的热插拔技术。
普通硬盘热插拔
以前的硬盘磁头不具备自动停靠的功能,在通电状态下磁头是“飞行”在盘片上面的,当系统断电之前,必须用一条叫“Park”的专用命令,来让磁头归位。否则,就有可能因为盘片瞬间停转而磁头来不及归位,造成盘片被磁头“铲伤”。
硬盘只有当读取数据的时候,磁头才会飞行在盘片表面。一读取动作结束,磁头立即自动归位停靠。同时,硬盘都具备延时断电的功能。即当系统供电突然丢失时,硬盘本身的控制器能自动探测到这个变化,然后强迫磁头停止当前读写指令的执行,并使磁头正常归位。这个设计大大加强了硬盘在意外断电情况下的安全系数。 所以,盘片损伤的可能性其实是极低的。但这并不意味着热插拔硬盘是毫无危险的。因为开机状态下带电插拔硬盘,都会产生一个瞬时的冲击电流,过去我们认为这是造成硬盘带电插拔损坏的罪魁祸首。然而事实上,硬盘电源接口电路对这种瞬间电流的变化的宽容度是比较大的,绝大多数时候并不会导致硬盘电路板被烧毁。真正的危险来自于硬盘的数据线!在带电状态下插拔硬盘数据线,数据线上也会产生不正常的瞬间电流和压降,导致多个精密控制芯片被烧毁,这才是真正的“硬盘杀手”。
因此,只要我们能保证插拔电源线和数据线的顺序正确,即“插”硬盘的时候先接数据线,后接电源线;“拔”硬盘的时候正相反,先拔电源线,后拔数据线。这样,硬盘热插拔就不是天方夜谭!
应该感谢微软!是它把Windows操作系统的硬件在线识别和即时禁用功能做得如此完美,才让硬盘热插拔并且即插即用成为可能。首先,Windows系统可以绕过系统BIOS的设置,自行管理所有硬件,这是硬盘即插即用的第一要素。此外,在Windows设备管理器的“操作”菜单中,有一个“扫描检测硬件改动(A)”功能。当硬盘在开机状态下被插到系统中后,运行这个扫描检测功能,就能使新硬盘被操作系统识别并且正常使用。而在开机状态下拔出硬盘前,由于Windows会自动监测和向硬盘写数据,因此必须先将这个设备卸载,以使操作系统停止一切对该硬盘的操作,这时就可以安全地拔下硬盘了。
为验证以上观点,笔者亲手操作了一下,以下是操作步骤:将硬盘的跳线设置到CS(Cable Select,电缆选择)状态,插上硬盘数据线和电源线,在设备管理器的“操作”菜单中扫描检测硬件改动,完成之后,新硬盘即可以开始正常操作了。
热拔的步骤与此类似,先在设备管理器中找到该硬盘选择“卸载”,再将电源线拔下,确定硬盘已经停转后,即可拔下数据线。至此,硬盘被彻底热拔除。
由于是带电插拔,瞬间电流和电压的变化,有可能导致系统死机,但热插拔硬盘经笔者的长期操作验证从未导致过硬盘烧毁。不过这毕竟是非常规的硬盘安装和使用方法,硬盘存在热插拔和即插即用的可行性,但普通用户最好不要轻易模仿。
一般的外设,像软驱、光驱甚至是硬盘都可以使用热插拔,在安装时记住要先插数据线,后插电源线,拆下时刚好相反,只要您注意步骤正确,完全就可以把热插拔玩弄于股掌之间。
不过在硬盘热插拔时要注意,一定要使用同一个型号的硬盘,因为您硬盘的型号数据还存储在主板的BIOS里,这个是无法修改的,而软驱、光驱就没有这个问题了,您可以大胆的使用热插拔。
十、srpp电路的原理与设计?
SRPP电路的名称是由日本人命名的,为Shunt Regulated Push Pull的缩写,意为分流调整式推挽放大器;而美国有的人则把它叫作μ-Follower电路,看作是一种含有特殊结构的跟随放大电路。
根据当前对SRPP电路的研究,其工作结构可理解为,是由有源负载(T2)与放大器部分(T1)共同组成随动结构,通过工作点自律调整和向负载分流的方式,相互推挽一起完成动作的放大器。
为了讨论它的工作原理,这里以电子管放大器为例进行说明(若未特别指明,文中的电子有源器件均是指电子管)。就电路的静态工作情况来看,T1、T2为串联方式,如果它们的工作特性和所取参数一致,并具有相同的工作点,那么有屏极电流Ip1=Ip2,屏阴极间电压Upk1=Upk2=UB/2,是点点对称的。
而当电路加上交流信号时,设输入信号为正半周,那么T1管的栅偏压-Ug1升高,屏极电流Ip1增大,屏阴极间电压Upk1减小,同时T2管阴极电阻Rk2上的分压电压增加,使-Ug2减小(这里我们可以看出,T1电动势与T2电动势的极性是互为反相的),Ip2降低,Upk2增大,因此形成了从零电位经负载RL反向回流的电流IRL;
反之,输入信号为负半周时,T1管的-Ug1、Ip1降低,Upk1升高,T2管Rk2上的电压降低,-Ug2、Ip2增大,Upk2减小,则电流IRL经RL向零电位分流,从而完成一组推挽动作;特别地,若RL=∞时,则电路负载的阻抗仅为T1管有源负载的动态电阻,全电路处于恒流工作,流经负载RL的电流IRL=0,只有电压放大作用。这就是所谓的“分流调整推挽”理论。