023电线网

同步整流buck电路中那两个电感是起什么作用的~~?

023电线网 0

一、同步整流buck电路中那两个电感是起什么作用的~~?

L1的作用毋庸置疑,就是电路的主储能(滤波)电感。可以看看简单Buck的拓扑,就能对应上了。

L2的作用我不确定,但我觉得有降低主开关管MOS管米勒效应的作用,但这个光靠文字不好描述,欢迎讨论。

二、同步整流滤波电路?

    同步整流滤波电路是常用电源电路,由整流电路和滤波电路两部分组成,主要功能和作用是将交流电源降压、整流、滤波为合适的直流电压,作为电子电路的工作电源。

整流电路是将交流电转换为直流电的电路。整流电路是利用二极管等具有单向导电特性的电子器件进行工作的,包括半波整流、全波整流、桥式整流等电路形式。

三、同步整流电路?

同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。

功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。

四、Buck电路?

buck电路的工作原理即小波纹近似原理,buck电路的输出电容由较大的直流分量和细小的波纹分量组成,可以将其近似看作一种恒定直流,因此可以改变电路由于某些原因导致电压升高的情况,这就是buck电路的工作原理。

综上所述,buck电路因其强大的功能应用非常广泛,几乎有电源的地方就会有一个buck电路,希望像这样方便好用的电路能够越来越多,让我们的生活越来越便利。

五、buck电路属于?

BUCK电路就是一种DC-DC转换器,简单的讲就是通过震荡电路将一直流电压转变为一高频电源,然后通过脉冲变压器、整流滤波回路输出需要的直流电压,类似于开关电路。

六、buck电路原理?

1. 开关整流器 2. 传说中的“伏-秒平衡” 3. 同步整流死区时间 三部分详细介绍Buck电路的工作原理。

Part 1 开关整流器基本原理

在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。设开关管开关周期为Ts,则开关频率fs=1/Ts。导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。设占空比为D,则D=Ton/Ts。改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。

Buck电路特征• 输出电压≤输入电压 • 输入电流断续• 输出电流连续 • 需要输出滤波电感L和输出滤波电容C

Part 2 传说中的“伏-秒平衡”

伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。

在一个周期 T 内, 电感电压对时间的积分为 0,称为伏秒平衡原理。正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量, 都会满足伏秒平衡原理。

Part 3 同步整流死区时间

同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。

物理特性的极限使二极管的正向电压难以低于0.3V。对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。

在开关电源系统中,死区时间(Dead Time)是指为了避免两个晶体管开关同时导通而引入的屏蔽时间。

连接的两个晶体管开关通过交互地闭合和关断来决定线圈中电流的增减。为避免两个晶体管同时导通造成不必要的电流浪涌,即需控制电路在开关动作引入死区特性。在死区时间内,需要完成对已导通晶体管的关断和另一晶体管的导通。死区时间• 设置必要的死区时间以防止短路。• 死区时间越小,体二极管传导越少。• 死区时间越小,损耗越小,效率越高

七、同步整流电路的优缺点?

1、优点:同步整流可提高效率,同时也能够极大地帮助瞬态负载调节。它为电源预加载提供了一种高效的方法。另外,相比摆动电感,它还拥有更加稳定的控制环路特性。它提高了传统降压转换器,以及所有其他能够使用同步整流的拓扑结构的动态性。

2、缺点是:当输入电压较高,输出电压较低时,占空比过小,可采用的同步整流驱动方式也比较少。

八、全桥同步整流电路原理?

你好,全桥同步整流电路是一种高效节能的电源转换器,用于将一个交流电源转换成一个直流电源,其原理是通过四个控制元件(通常是固态开关管)组成一个桥式电流整流器,控制电路使得控制元件按照规定的时间序列开关,实现电源的整流和电荷的存储,从而实现电能的转换。

相比于其它整流电路,全桥同步整流电路的主要优点是使用同步整流技术,有效降低了电源转换过程中的功耗损失和谐波干扰,提高了电源转换的效率。

九、buck电路口诀?

Buck电路特征口诀

• 输出电压≤输入电压

• 输入电流断续

• 输出电流连续

• 需要输出滤波电感L和输出滤波电容C

Buck、Boost、Buck-Boost作为直流开关电源中应用广泛的拓扑结构,属于非隔离的直流变换器。

十、异步buck电路原理?

BUCK电路:输出电压低于输入电压,即降压。另外还有BOOST和BUCK-BOOST电路,这里暂不做分析。降压电路的基本拓扑结构如下:(Vout《Vin)

  

  其中,开关相当于一个PWM调制器,设置合适的占空比,得到的电压为方波,二极管在开关关断的状态下,为LC提供了一个回路,LC简单来说就是一个滤波器,将得到的输出电压和输出电流进行滤波,分开来讲,电感用于抵抗电流的变化,电容用于抵抗电压的变化,因此,我们可以得到稳定的输出电压和输出电流。

  当开关处于ON的状态时,二极管处于截止状态:

  

  电感上的电压与电流可以由如下公式计算得到:

  

  经电感和电容滤波后,输出电流/电压由方波变成较平稳的纹波电压/电流。

  

  在电路应用当中,一般不希望存在较大纹波,根据以上给出的公式可以发现,通过增大开关频率,电感体积,或者电容可以减小输出电压/电流的纹波。同样的,为了减小整个电源模块的体积,也可以通过增大开关频率来实现,增大开关频率可以减小电容电感的体积,电源电路的设计当中通常是电感电容的占用面积最大,这也是为何许多公司选择将大的电感或电容从电路中移除,采用用户外接的方式来达到同样的效果。但是频率的增大也会带来相应的坏处,如降低电源效率,增加开关管损耗以及二极管损耗,电路的功耗也会相应增加。因此在设计电源模块时,需结合实际情况考虑其体积以及电路损耗。

  BUCK电路的设计可分为四步:

  根据输入输出电压确定开关转换器的占空比:DC=Vout/Vin;

  确定其输入输出功率,从而决定其带负载能力;

  确定相应的开关频率,得到每个脉冲周期内的能耗;

  根据已知的脉冲周期内的能量以及输出电流,可以计算出电感的大小:L=2E/I2;

  根据需要选择相应的MOS开关管,二极管以及电容。

  以上只是总结了基本的BUCK电路工作和设计原理,然而实际情况下的电源设计需要考虑的因素将会更为复杂。