023电线网

正负误差补偿法可以消除系统误差吗?

023电线网 0

一、正负误差补偿法可以消除系统误差吗?

减小系统误差有如下三种方法。

①对测量仪器仪表进行校正。在准确度要求高的测量中,引用修正值进行修正;对于常用仪表,经过检定,测出标度尺每一刻度点的绝对误差,列成表格或作出曲线,在使用该仪表时,可根据示值和该示值的修正值求出被测量的实际值,这样就可消除由于测量工具引起的系统误差。

②消除产生误差的根源。正确选择测量方法和测量仪器,尽量使测量仪器在规定的使用条件下工作,消除各种外界因素造成的影响。

③采用特殊的测量方法。实际测量中可根据测量仪器仪表和被测量的不同,采用不同的测量方法来达到减小误差的目的,如采用正负误差补偿法、等值替代法、换位消除法、对称观测法等。

例如,用电流表测电流时,考虑到外磁场对读数的影响,可以把电流表放置的位置转动180°,分别进行两次测量。两次测量中,必然出现=次读数偏大而另一次读数偏小的情况,取两次读数的平均值,作为测量结果,其正、负误差抵消,可以有效地消除外磁场对测量结果的影响。

除此以外,在测量之前,要仔细检查全部量具和仪表的安装及调整情况,合理选择配线方式,防止测量工具互相干扰;选好观测位置,消除视差;并避免外界条件所产生的急剧变化,以消除产生系统误差的来源。

二、补偿法测电动势误差原因分析?

补偿法测电动势误差的主要来源有:

1、仪器的不准确:比如使用过久的仪器,比如电表,定值电阻等,可能就存在误差。

2、读数的不准确:读电表时,存在每次读数都不一样,所以做实验时总要多次实验取平均值,以减小误差。

3、电路连接方式不正确导致误差:给定不同的仪器,那么测电动势时的电路可能就不同。

三、补偿法测电压和电流的原理?

原理就是用一个大小相等,方向相反的电动势,对抗待测电池的电动势,使线路中的电流为零,此时测得的两极之间的电势差,即为待测电池的电动势

电压的测量,一般用伏特表。由于电压表并联在测量电路中.电压表有分流作用,会对原电路两端的电压产生影响,测量到的电压并不是原电路的电压。用电压表测量电源电动势时,由于电压表的引入,电源内部将有电流,电源一般有内阻,内阻上持有电压降,从而电压表读数是电源的端电压,它小于电源的电动势。由此可知,要测量电动势,必须让它无电流输出。

四、电源电压误差范围?

1 是指实际输出电压与标称输出电压之间的偏差范围。2 的大小与电源的类型、等级、工作环境等因素有关,一般情况下,工业用电源的误差范围相对较大,可达到±5%!左(MISSING)右;而精密仪器用电源的误差范围则非常小,一般只有±0.1%!左(MISSING)右。3 对于电子设备的正常运行非常重要,如果误差范围过大,会导致设备不能正常工作或者寿命缩短,因此需要根据实际需求选择合适的电源。

五、电压极限误差计算?

电压偏差又称电压偏移,《GB/T 12325-2008 电能质量 供电电压偏差》定义电压偏差是指实际运行电压对系统标称电压的偏差,相对值以百分数表示。电压偏差仅仅针对电力系统正常状态而言,供电电压偏差过大会对电网造成影响,本文简单介绍电压偏差的限制以及测量方法。一、供电电压偏差的限值  对于供电电压偏差的限制GB/T 12325-2008做了详细的要求:  35kv及以上供电电压正、负偏差绝对值之和不超过标称电压的10%;  注:如供电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值作为衡量标准。  20kv及以下三相供电电压偏差为标称电压的±7%。  220kv单相供电电压偏差为标称电压的+7%,-10%。  对供电点短路容量较小、供电距离较长以及对供电电压有特殊要求的用户,由供、用点双方协议确定。二、供电电压偏差的测量方法  用于测量电压偏差的测量仪器的性能分为A级性能和B级性能两种:  A级性能----用来进行需要精确测量的地方,例如合同的仲裁、解决争议等。  B级性能----可以用来进行调查统、排除故障以及其他的不需要较高精确度的应用场合。  A级性能电压检测仪的测量误差不应超过±0.2%;B级性能一起的测量误差不应该超过±0.5%。  在进行具体测量时,获得电压有效值的基本测量时间窗口应为10周波,并且每个测量时间窗口应该与紧邻的测量时间窗口接近而不重叠,连续测量并计算电压有效值的平均值,最终计算获得供电电压偏差值,计算如下:

  对A级性能电压监测仪,可以根据具体情况选择四个不同类型的时间长度计算供电电压偏差:3s、1min、10min、2h。对B级性能电压监测仪制造商应该表明测量时间窗口、计算供电电压偏差的时间长度。时间长度推荐采用1min或10min。三、影响电压偏差的原因及其危害1.影响电压偏差的原因供电距离超过合理的供电半径。供电导线截面选择不当,电压损失过大。线路过负荷运行。用电功率因数过低,无功电流大,加大了电压损失。冲击性负荷、非对称性负荷的影响。调压措施缺乏或使用不当,如变压器分头摆放位置不当等。用电单位装用的静电电容器补偿功率因数没采用自动补偿。 2.电压偏差的危害对用电设备造成危害   当电压偏离额定电压较大时,用电设备的运行性能恶化,不仅运行效率降低,很可能会由于过电压或过电流造成设备的损坏。对电网的危害   系统运行电压偏低时,输电线路极限大幅度降低,可能造成系统频率不稳定的现象,甚至导致电力系统频率崩溃,带来重大的损失。

六、铅酸电池电压误差?

电压误差在±10%以内基本都可算为正常。

通常12v的铅酸蓄电池电压范围是10.8v-13.2v,而最高充电电压是15V。铅酸电池的单格标称电压是2.0V,一般放电到1.5V,充电能到2.4V。常用的电瓶额定电压12V的电池由6个单元格电池串联起来组成,标称电压是12V。

一般情况下小汽车电池充满电时电压在13v~14v左右,大型汽车电池为26v左右。当一块电瓶电压不足10.5v时即应充电,对于12v铅酸电池,最高充电可达16v。实际上在应用中,单块电池的电压范围在10.5V-14V均可算为正常。

七、霍尔电压实验误差分析?

零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同- -等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。

温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

八、电压比较器误差分析?

1、接在电压互感器二次侧负荷的容量不合适,接在电压互感器二次侧的负荷超过其额定容量,使互感器的误差增大。

2、电压互感器二次侧短路。由于电压互感器内阻抗很小,若二次回路短路时,会出现很大的电流,形成误差测量,甚至将损坏二次设备甚至危及人身安全。

扩展资料:

除误差外的常见异常:

(1)三相电压指示不平衡:一相降低,另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断;

(2)中性点非有效接地系统,三相电压指示不平衡:一相降低,另两相升高或指针摆动,可能是单相接地故障或基频谐振,如三相电压同时升高,并超过线电压,则可能是分频或高频谐振;

(3)高压熔断器多次熔断,可能是内部绝缘严重损坏,如绕组层间或匝间短路故障;

(4)中性点有效接地系统,母线倒闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架绕、绕组层间或匝间短路故障;

(5)中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能是高压绕组N端接地接触不良。

(6)电压互感器回路断线处理。

处理方法:

(1)根据继电保护和自动装置有关规定,退出有关保护,防止误动作。

(2)检查高、低压熔断器及自动空气开关是否正常,如熔断器熔断、应查明原因立即更换,当再次熔断时则应慎重处理。

(3)检查电压回路所有接头有无松动、断开现象,切换回路有无接触不良现象

九、合母电压和控母电压误差?

合闸母线电压是给断路器等提供电源的,控制母线电压是给控制回路提高操作电源的。

变电站的 开关柜 一般具有手动合闸、电动合闸。

电动合闸的操作电流有交流220V,直流220V。变电站为了更安全可靠供电,一般操作电源使用直流操作电源。

直流屏的作用: 在掉电的情况下,使用直流操作电源对开关快速合闸。减伤事故时间。在变电站内所变交流电源经过整流出直流电源,然后接充电电池组成的充电柜。直流屏由整流柜和充电柜组成。通过合母、控母引入每个 开关柜 内。对开关进线远程、就地分合闸。

合母:一般由直流屏变出DC240V,对断路器进线分合闸使用的电源。提供合闸瞬间较大电流。

控母:一般由直流屏变出DC220V,对操作回路供电,提供较小的电流。

十、倾角补偿法?

是一种用于测量地球上物体位置的技术。在导航、地质勘探、建筑工程和无人机等领域中,常常需要准确测量物体的位置和方向,而倾角补偿法可以帮助解决在倾斜或不平的表面上进行测量的问题。

当测量仪器(如传感器或测距仪)位于一个倾斜的表面上时,如果不进行倾角补偿,其测量结果可能会产生误差。这时倾角补偿法可以校正这些误差,以获得准确的测量结果。

倾角补偿法的基本原理是通过测量仪器内置的倾角传感器,获取仪器所处的倾斜角度,并将这个倾斜角度纳入到测量计算中。通过这种方式,可以将测量结果进行修正,得到物体在水平表面上的准确位置或方向。

在导航领域,倾角补偿法常常应用于惯性导航系统中,用于校正姿态传感器的测量误差,从而提高导航的精度和稳定性。在建筑工程中,当测量仪器放置在倾斜的地面或墙面上时,倾角补偿法可以帮助工程师获得准确的测量结果。

总的来说,倾角补偿法是一种重要的技术,它可以提高测量的准确性,帮助我们更好地理解和利用地球上的空间信息。